Modelling for the Soil Thematic Strategy: Assessing Erosion Control Measures

Erwin Schmid

BOKU / IIASA

workshop at JRC in Ispra, Italy 11th - 12th April 2005

Outline:

- 6 Fields from the Kocin Farm (SK)
- Soil and Crop Management Information
- APEX model
- List of Alternative Management Practices to Control Water Erosion
- Preliminary Model Results
- Discussion

6 Fields from the Kocin Farm (SK)

Ø rainfall/yr: 540 mm elevation: 251 m

16527

Field 16527: size: 50.4 ha Ø slope: 6.35 % Field 16528: size: 121.7 ha Ø slope: 2.78 % Field 16529: size: 30.2 ha Ø slope: 4.48 % Field 16553:

size: 41.1 ha Ø slope: 2.11 %

Field 16555: size: 78.5 ha Ø slope: 3.54 %

Field 16556: size: 22.9 ha Ø slope: 2.57 %

Soil Properties from Field 16527

	Тор	Sub1	Sub2
soil layer in m	0.3	0.8	1.2
sand in %	0.8	10.4	23.8
silt in %	59.0	57.3	58.4
clay in %	33.0	32.3	17.8
bulk density in t/m³	1.27	1.28	1.39
Field capacity in m/m	0.443	0.433	0.337
Wilting Point in m/m	0.337	0.331	0.202
orgC in %	0.81	0.24	0.23
рН	6.70	6.24	7.30
Saturated Conductivity in mm/h	1.155	1.432	6.147
Volume of Stones in %	2.0	2.0	2.0
Sum of bases in cmol/kg	19.10	20.02	16.16
Cation exchange capacitiy in cmol/kg	19.20	20.39	15.93

Dominant Crop Rotations

	CR1	CR2	CR3
	CSIL	CORN	CSIL
	ALFA	SBAR	SBAR
	ALFA	WWHT	WWHT
	ALFA	SGBT	WRAP
	WWHT	WWHT	WWHT
	SBAR		
Fields	16555	16528	16527
	16553	16529	
		16556	
/	-	-	-

Crop Management

	Crop Yield	ls in t/ha	Commerc	ial Fertilizer	in kg/ha	Manure in t/ha
	mean	std	Ν	P2O5	K2O	5% TS
WWHT	5.2	1.0	107	35	30	
CSIL	33.7	6.8	145	9	17	30
ALFA	6.2	1.4	38	10	5	
SBAR	4.8	1.0	32	18	19	
CORN	5.0	0.9	152	43	63	
SGBT	52.1	8.3	96	0	0	40
WRAP	2.6	0.8	160	84	50	

Legend:

WWHT	Winter Wheat	CORN	Corn Grain
CSIL	Corn Silage	SGBT	Sugarbeet
ALFA	Alfalfa	WRAP	Winter Rape
SBAR	Spring Braley		_

Agricultural Policy Environmental eXtender model

optional 7 Water Erosion equations

- 1. MUST theoretical
- 2. AOF Onstad-Foster
- 3. USLE Universial Soil Loss Equation
- 4. MUSS Small Watershed MUSLE
- 5. MUSL Modified USLE
- 6. MUSI MUSLE with input parameters
- 7. RUSLE USLE for steep slopes >20% i.e.

Management i.e.:

- Buffer Strips
- Grassed Waterways
- Terraces

on a daily time step

List of Alternative Management Practices to Control Water Erosion

- 1 conventional tillage (i.e. moldboard plough)
 reference situation
- 2 contouring
- 3 reduced tillage (i.e. shallow disk plough)
- 4 minimum tillage (except for root crops, e.g. sugar beets)
- **5** winter cover crops

List of Alternative Management Practices to Control Water Erosion

- 6 grassed waterways (10% of field; 50m width)
- 7 buffer strips (2% of field; 10m width)
- 8 terraces (i.e. permanent crops, e.g., vineyards)
- 9 comb. of management measures (1); e.g., contouring, disk plough & grassed waterway
- 10 comb. of management measures (2)

Some Preliminary Modelling Results for Field # 16527

Carbon in Soil Profile

conventional tillage

Impact Assessment of Alternative Management Practices for Field # 16527

Sediment Transport relative to Conventional Tillage (1)

Field Outlet

Nitrogen in Runoff relative to Conventional Tillage (1)

Field Outlet

Change of org. Carbon in Soil Profile after 10 years of simulation

Total Crop Production relative to Conventional Tillage (1)

Note: Total production is the sum of dry matter yields of all crops in the crop rotation times field area. Reduced field area in (6), (7), and (9) due to waterways (-10%) and buffer strips (-2%).

Impact Assessment of Alternative Management Practices for all 6 Fields Model Output Presentation with Output Response Functions

Regression Model (OLS) using Dummy Variables

$$Y = \beta + \beta_2 M_2 + \dots + \beta_{10} M_{10} + \varepsilon$$

where $M_2,..., M_{10}$ are alternative management practices that are represented by dummy variables (0,1)

Average Sediment Yields (t/ha)

	Parameter		
Variable	Estimate	in %	t - probability
β	4.14117	100	< .0001
eta_2	-1.75083	-42.3	0.0366
β_3	-2.43033	-58.7	0.0038
eta_4	-2.94917	-71.2	0.0005
eta_5	-1.31683	-31.8	0.1155
eta_6	-1.86117	-44.9	0.0263
eta_7	-1.66233	-40.1	0.0471
eta_9	-3.46617	-83.7	< .0001

Average org. Carbon in Soil Profile (t/ha)

Variable			Field		F	ilter Area
	Parameter			Parameter		_
	Estimate	in %	t - probability	Estimate	in %	t - probability
β	70.48318	100	< .0001			
eta_2	0.05286	+0.1	0.9844			
eta_3	3.78598	+5.4	0.2039			
eta_4	4.75454	+6.7	0.1108			
eta_5	1.54817	+2.2	0.6031			
eta_6	-0.03227	-0.1	0.9914	12.84499	+18.2	< .0001
eta_7	-0.03156	-0.1	0.9915	12.83685	+18.2	< .0001
eta_9	3.95125	+5.6	0.1849	12.82589	+18.2	< .0001

Average Crop Yields (t/ha)

	Parameter		
Variable	Estimate	in %	t - probability
β	6.71183	100	< .0001
eta_2	-0.01683	-0.3	0.9745
eta_3	-0.23817	-3.5	0.6509
eta_4	-0.32600	-4.9	0.5357
eta_5	-0.17683	-2.6	0.7369
$oldsymbol{eta}_{6}$	-0.73193	-10.9	0.1647
eta_7	-0.20039	-3.0	0.7034
$oldsymbol{eta}_9$	-0.92123	-13.7	0.0805

Note: Average dry matter yields per hectare. Reduced field areas in (6), (7), and (9) due to waterways (-10%) and buffer strips (-2%).

Discussion

- selection of representative plots across EU25 (project by end of July)
- list of alternative management practices
- time length of simulation (short, medium, long-run impacts)
- crucial input information (field size, slopes, crop management i.e., fertilization, irrigation, tillage, etc.)
- grassed waterway and buffer strip design
- environmental and economic impacts
- model output presentation: surface response functions